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1. Introduction 

Let a finite population consist of N distinct 
identifiable units Ui. with values x0., xl , 

If 2N' the population mean of the character- 

istic X2 

of xON based on the use of two auxiliary 
is unknown, the ratio -type estimator 

i = 1, 2 N of the characteristics X0, variables X1 and 

X.1, , . Consider the problem of estima- 
ting the population mean x 

ON N x when t2d 
1 

data on two or more auxiliary characteristics 
Xi i =1, 2, ..., X correlated with X are 
available or can be obtained easily. In this situa- 
tion, it is customary to use data on auxiliary 
characteristics to obtain ratio -type estimators of 

xON Several authors including [3], Raj 

[4], Rao and Mudholkar [5], Shukla [6], Singh 
[7] and [8], Smith [ 9] and Srivastava [10, 11, 12] 
have proposed ratio -type estimators utilizing data 
on several auxiliary variables. The estimators 
involve unknown weights which have to be estima - 
ted and assume knowledge of the population 
means of the auxiliary characteristics used. 
Clearly, none of the estimators proposed is 
satisfactory from the point of view of users and 
there is a need to investigate the matter further. 
The object of this paper is to present ratio -type 
estimators based on two or more auxiliary 
characteristics which do not involve unknown 
weights and at the most assume knowledge of the 
population mean of the auxiliary characteristic 
least correlated with X0 along with appropriate 
expressions for bias and mean square error. 
Almost unbiased ratio -type estimators are also 
developed and a discussion is given concerning 
the efficiency of these estimators. 

2. Multivariate Ratio -type Estimators 

Let denote the correlation coefficient 

between X0 and Xt . We shall assume that for 

< Poi < Poi . We shall first consider the case 
when X = 2 and assume three phase simple 
random sampling without replacement in which 
n2 units are drawn from N in the first phase to 

observe X2, a sub -sample of n1 units is drawn 

in the second phase to observe X1 and from n2 

a sub- sample of n0 units is drawn from n1 in 

the final phase to observe Xo. Let xtm denote 

the sample mean based on m units correspond- 
ing to the characteristic Xt. 
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of 

If 

RON 
is 

t2 - 

X2 is defined as 

1 (2. 1) 

is known, the ratio -type estimator 

defined as 

XZN (Z. 2) 

The multivariate ratio -type estimator corre- 
sponding to X auxiliary variables is now obvious. . 

If is not known, the estimator is defined as 

X 

1-1, ni-1 

i=1 
LX. 1,n. 

1-1 

X (2.3) 

If is known, the estimator is defined as 

X t = 

- 
n 

1,n, 
1-1 

(2. 4) 

It is assumed that sampling is carried out in 
(X + 1 ) phases with simple random sampling 
without replacement in each of the phases and 
may be diagramatically described as follows. 

N SRS (XX) SRS (XX -1) 

... SRS S n0 

where at a particular phase nt denotes the 
sample size to be drawn at random from nt 

+1 

and Xt denotes the characteristic to be observed 

on n units. t 
3. Bias and Mean Square Error of the 

Multivariate Ratio -type Estimators 

Consider first the estimator tXd. By 

definition 



Bias (tad) = E (txd) 
XON 

and MSE (txd) = E(tXd XON)2 

It is not possible to obtain exact expressions for 
the bias and mean square error. However, 
expressing t _as a power series in powers of 

x in. = 
Xi in. N , 

and 
1 2 1 1 

(3. 1) 
MSE1 (t) = xON N) i 1 

X. 

ignoring terms of order higher than two and 
taking expectation term by term, we obtain 

X 
1 1 2 Bias 1(td) = xON i ( 

- ñ (Cxl - Cx1 

and 

MSE 

(3. 2) 

1 1 

ON N 

( 2C - C2 ) (3. 3) 

where C2 =S 2 x. 

with 

and 

S 
= xixO (3.4) 

IN xON 
iN 

= 
- xiN)2/ (N - 1) 

1 

N 

(xit - xiN)(xOt ON 

(3. 5) 

Following the procedure of David and Sukhatme 
[1], it can now be shown that 

I Bias (txd) Bias (tad) < 
2 n 

Al 

MSE (tXd) MSE1 
(tXd) < 2 

A2 
(3. 6) 

where A and A are finite. It follows that 
(3. 2) and1(3. 3) provide first order approxima- 
tions to the bias and mean square error of the 
estimator tXd In a similar manner, it can be 

shown that first order approximations to the 
bias and mean square error of are 

Bias]. (tx) 
=1 

- 

+(n - )(C2 - C nX-1 N x xOx 
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2 

(2Cx0xi - Cxi) N ) 
(2CxOxx 

- 
Cxx 

) 

(3. 8) 

Higher order approximations to the bias and 
mean square error have been obtained by Lal 
Chand [2]. However, the expressions are com- 
plicated and will not be presented. 

If the population is assumed to be so large 
that finite correction factors can be ignored 
and is symmetrically distributed about its 
means, the expressions simplify considerably. 
In particular it can be shown that the second 
order approximations to the bias and mean 
square error for X = 2 are 

Bias2 (t2d) Biasl (t2d) 
1 + 

given by 

3C2 

MSE2 
(t2d) (t2d) 

1 + 

and 

Bias (t 
2) 

= 'Masi (t 
2) 

MSE2 (t2) = MSE1 (t2) 

3C2 

n0 

3C2 
x2 

n2 

2 

n1 

2(3.9) 3C2 
x2 

+ nl 

(3. 10) 

1 + + x2 

3C2 

n0 n1 

r1 

3C2 
+ 

n0 

(3.11) 

3C2 
+ 

x2 

n1 

(3. 12) 

where the first order approximations are 
obtained from the expressions (3. 2), ;3.3), 
(3. 7) and (3. 8) by taking X = 2. 

4. Almost Unbiased Multivariate Ratio -type 
Estimators 

In this section, we shall present multivar- 
iate analogs of the ratio -type estimators present- 
ed in section 3 which are almost unbiased in the 
sense that the bias to the first order of approx- 
imation is zero. The estimators corresponding 
to txd and are 



tXdM i=1 

and 

t i-1 

1 1 1 

s2 
xi 

X 

( 4. 1) 

i-1, ni-1 x 
i, 1-1 

X 
0 

x X. 
On 0 

- 
X-1 

1 n ) 

i=1 1-1 

s2 
XX 

2 x 

(4. 2) 

Expressing and t 
XM 

as power 

series in powers of 63E. , ignoring powers of in. 

order higher than two and taking expectation 
term by term, it can be verified that to the 
first order of approximation 

tXdM 
and t 

are almost unbiased estimators of xON. Pro- 
ceeding in a similar manner and evaluating their 
mean square errors, it can be teen that to the 
first order of approximation 

tXdM 
and t 

have the same mean square errors as tad and 

t respectively. We have thus proved the fol- 
lowing result 
Theorem 4. 1 The estimators 

tXdM 
and 

are almost unbiased estimators of XON. 

Further, to the first order of approximation 

MSE1 (tXdM) (txd) 
and 

MSE1 (tXM) = MSE1 (tX) 

where MSE1 (txd) and MSE1 are given by 

(3. 3) and (3. 8) respectively. 

5. Comparison of Estimators 

For the purpose of comparison, we shall 
consider the mean square errors of the appro- 
priate estimators to the first order of appro- 
ximation only. Since t and t 

X 
have the 

same mean square errors as 
tXM 

and tXM 

to the first order of approximation, it is enough 
to consider 

tXdM 
and 
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We have 

and 

- MSE1 (tXdM) = 
XON 

-1 

2 
- 

X-1 
1 1 

i 
i (n n 

- MSE1 (t) = 
XON 

- ) 

n. 

(5.1) 

2C -C2)+(---- 

(2C 
C2 

) 

It follows that if 

xOXX x 

C 
1 

> 2 C x0 

(5.2) 

for i =1, 2, X 

(5. 3) 
then both the estimators tXdM and t 

XM 
will be 

more efficient than the simple mean estimator 
x which does not use auxiliary data on any of 
the 0 variables. 

Further, we have 

MSE1(tX-1 
dM) MSE1 1 

(EX-1 
X 

(2C 
X XX 

C2 ) (5.4) 
X 

It follows that if inequality (5.3) is true 
MSE1 (tXdM) < MSE1 (tX 

-1 dM) (5. 5) 

for all values of X. 

It can also be seen that if inequality (5. 3) is true, 
then 

MSE1 (tXM) < MSE1 (tXdM) (5. 6) 

Combining all these results, we have the following 
Theorem 5. 1 If 

C 
1 

poi > 
X0 

for i =1, 2, ... , X, then 

MSE1 (ta) < MSE1 (txd) < MSE1 
d) ' 

< MSE1 (tld) < (Ono) 

and 

MSE1 < MSE1 (txdM) < MSE1 (t 

< MSE1 < V 
) 

0 
Finally, we shall compare tX for X = 2 with the 
ratio estimator 



xON = 
52N 

. Then noting that 

A 
1 -2 - 

2 2 
MSE1 

(x ON) no N ) xON 
x0+ 

A 

it can be seen that MSE1 (t2) < MSE1 
(xON) 

provided 

(x0i -RON x21)2 > -RON 

R1N 

The above condition would be always true pro- 
vided X1 is a better auxiliary variable than 
X2 for ratio method of estimation as assumed 
in this paper. 

We have seen that the ratio -type estimator 
based on X auxiliary variables is more 
efficient than the one based on (X -1) auxiliary 
variables provided 

P 
X > 2 C x0 

C 

Although, this result is of considerable value, 
what is more interesting is to know whether the 
reduction in variance is worth the extra cost 
required to observe the additional auxiliary 
variable. For the sake of simplicity, we shall 
consider the case X = 2 and choose that estim- 
ator for which the mean square error is min- 
imum when the total cost of collecting data can- 
not exceed a specified amount C0 . 

Consider a simple cost function of the form 

C = c 
0 
n 

0 
+ clbl + c2n2 (5. 7) 

where c. is the cost per unit of observing the 
characteristic X. i =0, 1, 2. We shall now 
determine n) such that MSE1 is min- 
imurn subject to the condition that C < Co . It 
can be seen that the optimal values of to 
achieve this are given by 1 

Q4 /c0 _/Q b4 c0 

nl n2 C0 

where 

and 

(5. 8) 

= 2CxOx2 
2 

-2C +C2 (5.9) 
0 0 1 

Q5 = C2 -2Cxx + 2Cxx - C2 
2 0 2 0 1 1 

For optimal choice of the n. , the optimal 
mean square error of the estimator t2dM is 
given by 

930 

MSEJ (t 
2 

In a similar manner, 

MSE1 (t1dM) 

opt 4c0 + ON 

it can be seen 
(5.10) 

that 

ON opt +ó1C 1]2 
Co 

where 
(5.11) 

Q1 = 

2Cx0x1 (5.12) 

1 

and 
2 

Cx V 
) 

c0 (5.13) opt ON p 

Co 

Comparing the mean square errors, it can be 
seen that 
MSE1 

(t2dM) opt .< MSE1 (tldM) opt < 
opt 2 2 

if c2 and cl < JQ4) 
c 

1 3 c0 

Since 
error to 

and tkd have the same mean 
e first order of approximation, 

follows that 

(5.14) 

square 
it 

MSE1 opt < MSE1 (tld) opt < opt 

provided (5.14) is true. 

6. Numerical Illustration 

For the purpose of illustration, we shall 
consider the census data relating to 99 counties 
of Iowa. The three characteristics we shall 
consider are 

X0: Bushels of apples harvested in 1964 

X1: Apple trees of bearing age in 1964 

X2: Bushels of apples harvested in 1959 

For this population, we have 

.293458 104 xIN .103182 x 104 

x2N 365149x104 

=.93 p =.84 

C2 = .402004 x 101 x0 

p = . 77 xix2 

C2 .255280 x 101 
xl 

C2 = .209379 x 101 
x2 

C =. 297075 x 101 C 244329 x 101 
x0x2 

Cx1x2=.177110x101 



For the purpose of comparing the different 
estimators, we shall assume that we have a 
large population with population parameters as 
given above. Further, we shall take 

n0 = 30 n1 = 60 and n2 = 120 

The relevant results for comparing the different 
estimators are given in Table 1 below. 

As is to be expected, the ratio -type estimator 

t2dM 
based on two auxiliary variables is the most 

efficient of all the three estimators, the gain in 
efficiency over tldM based on one auxiliary 
variable being 40% while that over the mean 
estimator is 139 %. 
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Estimator 

xOnO 

dM 

t2dM 

Mean Square Error Relative Efficiency 

w. r. t. 
0 

Relative Efficiency 

w. r. t. dM 

. 115399 x 107 1 0. 59 

. 676577 x 106 1. 70 1 

. 481 886 x 106 2. 39 1.40 
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